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A1 
TECHNICAL MEMORAJDUM X-393 

AERODYNAMIC CHXRACTERISTICS OF A BLUNT W-CONE 

ENTRY CONFIGURfiTION AT MACH J ~ M J ~ E R s  

FROM 3 TO 6* 

By Michael F. Sarabia 

Experimental and theore t ica l  studies were conducted with a conf~gura- 
t i o n  similar t o  the one described i n  NASA Memorandum 10-2-58~. The 
configuration is basically half of a blunt 30' c i rcu lar  cone with a 
trimmed l i f t -drag  r a t i o  of about 0.5 a t  supersonic speeds. Two se t s  of 
controls were investigated with t h i s  configuration. One s e t ,  similar 
t o  the one described i n  the forementioned reference, consisted of four 
trailing-edge f laps of aspect r a t i o  0.6. The second s e t  consisted 
of two horizontal f laps  of aspect r a t i o  1 f o r  pi tch control, and two 
v e r t i c a l  f laps  of aspect r a t i o  0.6 f o r  yaw control. 

The resu l t s  of the  t e s t s  indicated: (1) The configuration is 
s table  a t  Mach numbers from 3 t o  6 and angles of attack ranging from 
-180 t o  +180. ( 2 )  The f i r s t  s e t  of controls described can provide 
longitudinal, l a t e ra l ,  and direct ional  control a t  angles of attack near 
zero; however, the  aerodynamic cross coupling a t  angles other than zero 
could not be eliminated. ( 3  ) The second s e t  of controls studied can 
provide longitudinal and direct ional  control through a large range of 
angles of attack with l i t t l e  cross coupling but has no -provisions f o r  
d i rec t  r o U  control. Roll control would, therefore,  have t o  be provided 
by other means, f o r  example, reaction je t s .  

INTRODUCTION 
> 

J 

The motion and heating of near-earth s a t e l l i t e s  during entry into 
the earth 's  atmosphere have been thoroughly investigated i n  a nwiber of 
studies (see, e .g., re fs .  1 t o  4). As a r e su l t  of these studies,  the 
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problems associated with atmosphere entry are  now well recognized. In  
current investigations ( re fs .  1, 5 ,  and 6 )  a t tent ion is often directed 
toward the study of configurations which appear a t t rac t ive  as entry 
vehicles. In  reference 1 such a co3igurat ion was suggested and a 
preliminary evaluation of i ts  character is t ics  was presented. The con- 
figuration i s  basically half of a blunt 30' c i rcular  cone with four 
trailing-edge flap-type controls. Further studies of the  characteristics 
of t h i s  configuration have been made t o  provide additional information 
on i t s  performance and s t ab i l i t y ,  i ts  control character is t ics ,  and the 
pressure dis t r ibut ion over the body and control surfaces. The resu l t s  
of the investigation are the subject of t h i s  report. 

NOTATION 

A base area of vehicle, 1.26 x2  

CD 
drag drag coefficient,  - 

%A 

l i f t  
c~ l i f t  coefficient , - sooA 

rolling-moment coefficient,  ro l l ing  moment (body axes) 

pitching-moment coefficient , pitching IIDment (body axes ) 
%A$ 

cn yawing -moment coefficient , yawing nloment (body axes) 
%aAa 

P-Pm 
C~ pressure coefficient , - s, 
I I 

- CY side -force coefficient , side Orce (body axes ) 
%A 

d base diameter of vehicle 

2 length of vehicle 

M Mach number 

P s t a t i c  pressure 

Pa f ree  -stream s t a t i c  pressure 



s, f ree  -stream dynamic pressure 

a angle of attack (measured with respect t o  the top surface ) 

I3 angle of s ides l ip  

A incremental change due t o  control deflection 

BaZ deflection of the  lower control as a i leron (control s e t  I )  

deflection of the upper control as a i leron (control s e t  I )  
A 
2 

6e2 deflection of the lower controls as elevators (control s e t  I)  
3 
0 deflection of the upper controls as elevators (control s e t  I)  

61 deflection of the lower control (control  s e t ,  11) 
f, 

6, deflection of the upper control (control s e t  11) 

' r deflection of the side control (control  s e t  11) 

Note : A t  zero deflection, control is normal t o  the body base and 
positive deflections are  outward into the a i r  stream. 

Subs c r i p t  

derivative with respect t o  angle of s ides l ip  

APPARATUS AND TESTS 

m e  configuration tested is s l igh t ly  more than half of a blunt 
30' c i rcular  cone with a f l a t  section which has circular  l e a d i q  edges 
mounted on top  fo r  added depth. A dimensioned three-view sketch and 
a photograph of the model tes ted are shown i n  figures 1 and 2, 
respectively. 

The configuration studied included a s e t  of four trailing-edge 
f laps  with aspect ra t ios  of 0.6 (control s e t  I)  similar  t o  the s e t  
described i n  reference 1. This f i r s t  control s e t  i s  shown i n  figures 
1 and 2. Additional studies were made with a s e t  of trailing-edge 
f laps (control s e t  11) consisting of two horizontal f laps of aspect 
r a t i o  1 and two v e r t i c a l  f laps  of aspect r a t i o  0.6. This second s e t  of 
cont.rols is shown i n  figure 3. 



eLI 
The t e s t s  were conducted i n  the Ames 10- by 14-Inch Supersonic 

Wind !jkmnel ( r e f .  7 )  at Mach numbers 3, 4, 5, and 6 and angles of attack 
ranging from -18' t o  +lgO. This range of angles was obtained in part  by 
rotation of the support system through "4' and i n  part  by the use of 
stings bent t o  angles of oO, 7O, and 14'. The lateral-direct ional  
characteristics were measured a t  s ides l ip  angles from -4' t o  +hO a t  
angles of attack of approximately -7O, oO, 7O,  and lhO. The controls 
were tested a t  oO, 30°, and 600 deflection ( fo r  zero control deflection 
the  controls are normal t o  the  body base). Test Reynolds numbers, based 
on body diameter, are given i n  the following table: 

Mach number Reynolds number, 
million 

0 43 

The forces and moments on the model were measured with a six- 
component strain-gage balance. The model was supported from the base 
by the balance assembly which was shrouded t o  eliminate any direct  
aerodynamic loads on the balance. 

A l l  force and moment coefficients are referenced t o  the body base 
area. The pitching-moment coefficients are referenced t o  body length 
and the yawing- and rolling-moment coefficients t o  body base diameter. 

For the forebody and control pressure surveys the model was 
supported from the base and f o r  the base pressure survey the model was 
supported from the top. Photographs of the  models used in  the pressure 
dis tr ibut ion t e s t s  are shown i n  figure 4. The pressure coefficients 
were evaluated from data taken with conventional dibutylphthalate and 
mercury manometers. 

Accuracy of the  experimental resul t s  w a s  affected by uncertainties 
i n  the measured values of the  pressures, forces, and moments and in the 
determination of stream s t a t i c  and dynamic pressures and angles of 
attack and s ides l ip  . The c o d  inat ion of these uncertainties resulted i n  
e s t b a t e d  maximum errors i n  the t e s t  resul t s  as shown i n  the following 
table  : 



It should be noted tha t ,  f o r  the most par t ,  t he  t e s t  resul ts  presented 
are in error  by l e s s  than these estimates. 

FPSULTS AND DISCUSSION 

Ex-perimental resu l t s  f o r  the study configuration shown i n  reference 
1 indicated a decrease in longitudknal s t a t i c  s t a b i l i t y  at posit ive 
angles of attack; t h i s  decrease was believed due t o  overexpansion of the 
flow i n  the region of the nose-cone juncture. For t h i s  reason the 

A profi le  was modified from the hemisphere-cone used i n  referencg 1. The 

2 modification, which is  shown i n  f igure 3 ,  was gelected t o  give the body 

3 profi le  continuous curvature i n  the t r ans i t ion  region from the spherical 
3 nose t o  the conical body. The change i n  prof i le  is small as is shown 

i n  f igure 5. The modification resulted i n  improved pitching-moment 
character is t ics  as shown i n  figure 6. In t h i s  figure the moment 
character is t ics  of the configuration before and a f t e r  modification of 
the  profi le  are  compared. A l l  of the subsequent experimental resu l t s  
presented herein were obtained with the modified body-nose profi le .  

The longitudinal aerodynamic character is t ics  of the configuration 
were estimated with the aid of Newtonian impact theory f o r  the nose and 
conical surface and two-dimensional shock-expansion theory f o r  the top 
surface. The base-pressure coefficient was assumed t o  be equal t o  0.7 
of the vacuum pressure coefficient.  The la teral-direct ional  derivatives 
and control character is t ics  were e s t  imated with the aid of Newtonian 
impact theory. The resu l t s  of these calculations are presented together 
with the experimental resul ts .  

Performance and Longitudinal S tab i l i t y  

The variations with angle of attack of l i f t ,  drag, l i f t  -drag ra t io ,  
and pitching moment of the study configuration with a l l  f laps of 
control set I at zero deflection (90' re la t ive  t o  the base) a t  Mach 
nwnbers 3, 4, 5, and 6 are  shown i n  f igure 7. A t  these Mach numbers 
the  configuration was s table  and was trimmed at an angle of attack of 
about 2O. The l i f t  coefficient at t h i s  a t t i tude  was about 0.4 and 
the l i f t -drag  r a t i o  was about 0.5. As noted ea r l i e r ,  these data were 
obtained with the a id  of bent s t ings.  For t h i s  reason, several t e s t s  
were made a t  each Mach number t o  cover the complete range of angles of 
attack. The data presented i n  figure 7 were obtained by a combination 
of these runs. This procedure accounts f o r  the s tepl ike sca t t e r  i n  the 
pitching-moment resu l t s ,  par t icular ly a t  t e s t  Mach numbers of 5 and 6. 



It may be seen t h a t  the estimated values of lift and drag are i n  
close agreement with the measured values over the  t e s t  ranges of Mach 
numbers and angles of attack. Ln figures 7 (c )  and 7(d),  M = 5 and 
M = 6, respectively, the  estimates obtained with the  a id  of simple 
impact theory ( M  = a) are also shown. For these estimates the pressure 
coefficients are  assumed t o  be zero f o r  a l l  vehicle surfaces which do 
not "see" the oncoming flow. The primary difference between the 
estimated drag value at M = 5 and 6 and the estimate fo r  M = ca is the 
base drag which is  assumed equal t o  ,L/M~. The l i f t  coefficients esti3- 
mated f o r  M = 5 and 6 d i f f e r  from the calculated values f o r  M = i n  
the contribution of the  pressures acting on the  f l a t  top. In  the  former 
estimate these pressures were estimated with the  a id  of shock-expansion 
theory, while i n  the l a t t e r  case, they were calculated with the  aid of 
Newtonian impact theory. It is evident tha t  f o r  these Mach numbers, 
be t t e r  agreement with experimental resu l t s  is obtained with resul ts  
based on the calculations which include estimates of the pressures on 
the base. 

The estimated t r im angle of attack agrees well with the measured 
values. However, the  changes i n  the  measured pitching moment with 
angle -of -attack variation are  greater than estimated. The variat ion of 
measured pitching moment with angle of a t tack may be seen t o  approach 
the estimaeed variat ion with increasing Mach number. In the calculation 
of the pitching moments the contributions of the pressures acting on 

- the top  surface and the base were negligible since both resultant forces 
ac t  very nearly through the moment reference center. For t h i s  reason, 
the estimaeed pitching moments are  essent ia l ly  the same f o r  a l l  Mach 
numbers. 

Lateral-Directional S tab i l i t y  

The effect  of variations of angle of a t tack m d  of Mach number 
on the  lateral-directional-stability parameters, Cnp, Cyp , and Cz , are P 
shown i n  figure 8. The resu l t s  show tha t  t he  configuration i s  s t a t i c a l l y  
s table  a t  a l l  Mach numbers over the angle-of-attack range investigated. 
It is  also evident tha t  variations of t e s t  Mach number and of angle of 
attack have very l i t t l e  e f fec t  on the  s t a b i l i t y  levels .  The agreement 
between the measured values and those estimated f o r  M = i s  f a i r l y  
good. 

Control Effectiveness 

- - 
The character is t ics  of control s e t  I with the  body at an angle of 

Go a re  shown i n  figure 9 and tab le  I. The decrease in effectiveness 
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of the  upper controls with increasing Mach number is  part ly  associated I 

with the decrease of wind-tunnel Reynolds number. Because of t h i s  
decrease, shock-wave boundary-layer interaction increases. This inter-  
action manifests i t s e l f  in  an increase in boundary-layer thickness. 
Portions of the control inside the  boundary layer experience lower 
pressures than the exposed portions. This interaction is par t ia l ly  
alleviated by a gap (0.021 2 ) between the  body base and the control 
hinge l ine .  A t  a deflection angle of 60' and a Mach number of 4. the 
pitching moment i n  figure 9 is about 10 percent of the control contribu- 
t i o n  greater than the moment presented i n  reference 1. This increment 
is due t o  the gap added fo r  the  present t e s t s .  The increase in effective- 
ness of the lower controls a t  large control deflections with increasing 
Mach number is associated with changes i n  the flow about the controls 
discussed i n  the  presentation of the pressure-survey resul ts .  !The 
effec t  s f  angle of at tack on the  pitch control characteristics is shown 
i n  figure 10. 

From the  control characteristics shown in figures 9 and 10, 
tables I and 11, and the  body characteristics,  estimates have been made 
of the ab i l i ty  of control s e t  I t o  t r im the study vehicle over a range 
of l i f t  -drag ra t ios  . The resul t s  are  tabulated below: 

Two methods of varying the l i f t -drag  ra t io  were considered. With the 
f i r s t  method, the l i f t -drag  r a t i o  was varied in the conventional manner 
by varying the t r im angle of attack (numbers 1, 2, and 3 ) .  With the 
second method, the controls were employed as drag brakes while the t r im 
angle of attack w a s  maintained approximately constant a t  0' (numbers 
2, 4, 5, and 6) .  From these tabulated resul t s ,  it i s  apparent tha t  
control s e t  I provides fo r  a reasonably wide variation of L/D by 
e i ther  a t t i tude  control or  drag modulation. 

No. 

1 
2 
3 
4 
5 
6 

It is also apparent from figure 9, however, tha t  when the upper 
controls are used singly as ailerons, large pitching and yawing as well 
as rol l ing moments are produced. It was found (see ref .  1) tha t  t h i s  
cross coupling could be eliminated for  small control deflections a t  zero 
angle of attack by appropriately gearing opposite controls ( e . g . , the 
lower l e f t  and the upper r i g h t )  and thus a nearly pure ro l l ing  moment 
could be produced. Pure yawing moments could be produced by deflecting 
a lower control and cancelling the undesired moments by appropriately 
gearing the two upper contrnlc 

v 

L/D 

0.37 
0.50 
0 
0.46 
0.32 
0.22 

%rim 

l 5 O  
20 

-I@ 
00 
00 
-20 

'D 

1.04 
0.72 
0.53 
0.75 
0.97 
1 2  

'eu 

30° 
o0 
0° 

30° 
600 
90° 

'el 

0° 
o0 

25O 
1 8 O  

4 5 O  
65O 



Since re la t ive  deflection of the controls required t o  eliminate 
undesired moments i s  a function of angle of attack, as indicated i n  
figure 10, and of control deflection, the cancellation of the undesired 
'moments fo r  large control deflections o r  a t  angles of attack other than 
zero requires corrections i n  the deflection of the controls i n  addition 
t o  the simple gearing. A simple method t o  eliminate control cross 
coupling aerodynamically over the ranges of angles of attack and control 
deflections was not found. For t h i s  reason, an al ternate  control system 
was also studied brief ly.  

The al ternate  system (control s e t  11) consisted of single upper and 
lower f laps f o r  longitudinal control and single f laps a t  e i ther  side of 
the body base for  yaw control. No provision was made f o r  aerodynamic 
control about the  longitudinal axis. It would be anticipated tha t  a 
reaction-type system might be used f o r  r o l l  control. With the elimina- 
t i o n  then of the d i f f e ren t i a l  deflection of the  pairs of controls tha t  
is required f o r  yaw and r o l l  control with control s e t  I, it would be 
expected tha t  only minor interactions would occur f o r  the al ternate  
sys tem . 

0 
The characteristics of control s e t  I1 at an angle of attack of 0 

are shown i n  figure 11 and table  I. A s  shown i n  figure 11 the side 
f laps of control s e t  I1 can provide yawing moments with only small 
accompanying pitching moments. There is a s m a l l  pitching-moment contri- 
bution because the control drag acts  along a l ine  ver t ica l ly  displaced 
from the moment reference center. This  cross coupling could be 
eliminated by a small change i n  the f l a p  location. Control s e t  I1 can 
be used t o  vary the l i f t -drag r a t i o  by varying the trim angle of attack or 
by increasing the drag at a trimmed angle of attack near t o  0'. An 
estimate of the  range of l i f t -drag  ra t ios  possible with the two methods 
was made. Newtonian impact theory was used t o  estimate the control 
characteristics and experimental data a t  M = 3 were used fo r  the  
body characteristics.  'Ifhe resul t s  are presented in figure 12. The 
ranges of variation of l i f t -drag r a t i o  may be seen t o  be similar t o  
those obtainable with control s e t  I. 

Pressure Swvey 

Body.- The resul t s  of the pressure survey on the forebody of the - 
tudy configuration a t  an angle of attack of 0' and Mach numbers of 3, 
, 5 ,  and 6 are shown i n  figure 13. Comparison is made with estimated 

pressure coefficients obtained with Newtonian impact theory. lh general, 
the  agreement between the estimated and experimental resul t s  is good 
a f t  of the nose. Ln t h i s  case, agreement a t  the nose would probably be 
be t te r  i f  impact theory were modified t o  give the correct pressure 
coefficient a t  the stagnation point. Ln figure 14 the effect  of angle 



of atcack on the  body pressure coef i i c ien t s  i s  indicated.  The base 
pressure coef f i c ien t s  with the  body e t  an. angle 02 a t t ack  of k0 a r e  
shown i n  f igure  15 t o ~ e t h e r  lr i th the  value estinza ted assuming the  
pressure coef f i c ien t  t o  be 0.7 of the  vacuum pressure coef f i c ien t .  

Controls. - Pressure coef f i c ien t s  on the  controls  (con t ro l  s e t  I)  
a t  a body angle of a t t ack  of o0 a r e  shown i n  f igures  16  and 17. ~t 
high def lec t ion  angles, pressure coef f i c ien t s  up t o  about 5 were found. 
These values a r e  much higher, of course, than those predicted with 
Bewtonian impact theory. These high pressures a re  a r e s u l t  of the  mult i-  
p le  shock-wave compression of the  flow and a re ,  the re fore ,  higher than 
t he  pressure a t  the  nose stagnation point .  The e f f e c t  of t h i s  mult iple 
shock-wave type of conlpression increases with increasing l!hch number 
as evidenced by t he  increase i n  peak pressure coef f i c ien t  with increasing 
Mach number shown i n  f igures  16 and 17. The shock-wave pat terns  about 
t he  controls  a r e  shown i n  f i gu re  18. Pressures on the  upper con t ro l  
a re  a l so  affected by shock-wave bounds-ry-layer i n t e r ac t  ion, as can be 
seen by t h e  low value of the  pressure coeff ' icient a t  s t a t i o n  y/a = 0.15. 
This e f f e c t  a l so  increases with increasing Mach number primari ly because 
of t h e  decrease i n  t e s t  Reynolds number. The l a t t e r  e f f e c t  seems t o  
predominate with the  upper controls ,  f o r  t he  ef fect iveness  of these  
controls  decreases while t h a t  of t he  lower controls  increases with Mach 
number, a s  can be seen i n  f igure  9. 

SlJMP5ARY OF RESULTS 

An invest igat ion has been made of t he  performance, s t a b i l i t y ,  and 
con t ro l  cha r ac t e r i s t i c s  of a h i g h - l i f t ,  high-drag, s a t e l l i t e - e n t r y  
configuration s imi la r  t o  t h a t  proposed previously i n  NASA Memorandum 
10-2-58~ .  Tests were conducted a,t Mach numbers from 3 t o  6, at angles 
of a t t ack  from - 1 8 O  t o  +18O, at angles of s i d e s l i p  up t o  kO, and f o r  
con t ro l  def lec t ions  up t o  90'. The r e su l t s  of t h i s  invest igat ion a r e  
as follows : 

1. The configuration s tudied i s  longi tudinal ly ,  d i r ec t  ional ly ,  
and l a t e r a l l y  s t ab l e  a t  a l l  t e s t  angles of a t t ack  and Mach numbers. 
With controls  undeflected t he  vehicle trims a t  approximately 0' angle 
of a t t ack  and a l i f t - d r a g  r a t i o  of 0.5.  Ei ther  of the  two control  s e t s  
investigated provides t r im a t  l i f t - d r a g  r a t i o s  from about 0 t o  about 0 .5 .  

2 For t he  f i r s t  control  s e t  s tudied,  l a t e r a l -d i r ec t i ona l  and 
longi tudinal  con t ro l  moments a,re cross coupled. Cross coupling can be 
eliminated a;t zero angle of a t t a ck  by the  proper def lec t ion of the  
controls  . No metli-od was f oun?: f o r  e l i r c ~ i ~ a t i n g  cross coupling aerody-= 
namica,lly over a range of angles of a t t ack .  



3. The second control s e t  produces yawing and pitching moments 
largely independent of each other. This s e t  of controls .requires tha t  
the ro l l ing  moments be produced by some other means. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., June 29, 1960 
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- TABLE I.- CONTROL EFFECTIVENESS AT a = OO; 

CONTROL SET I 



TABLE I. - CONTROL EFFECTIVE-NESS AT a = 0'; 

CONTROL SET I1 - Concluded 



TABLE 91.- EFFECT OF CONTROL DEFLECTION OS\T PERFORIViPiNCE; COWROL SET I 







A-26831 

Figure 2.- Model tes ted with control se t  I. 



Figure 3. - Study configuration; con t ro l  s e t  11. 



( a )  Forebody pressure model. A-26829 

- 
- 

(b ) Control pressure model. 
I - . .  

( c ) - Base pressure model. A-26392 

- 

Figure 4. - Pressure survey models. 
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Figure 3.-  Modification of the  configuration studied. 
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F igure  7. - Longitudinal  c h a r a c t e r i s t i c s  of t h e  s tudy configura,-Lion; 
c o n t r o l  set I m-def lected 
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Figure 7. - Continued. 
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Figure 7. - Continued . 
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Figure 7.- Concluiled. 



Figure 8 . -  S t a t i c  s t a b i l i t y  of t he  study configuration; con t ro l  s e t  I 
undef lec ted.  
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Figure 9. - Control characteristics at a = 0'; control set I. 
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Figure 10.- Variation with angle of attack of the pitching-moment 
contribution due t o  control deflection; control s e t  I. 



Figure 11. - Control characteristics at a = 0'; control set 11. 















Figure 15.- Base pressure a t  a = 4'. 
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Figure 16. - Uwer control pressure distribution; control s e t  I, a = 0'. 
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Figure 17.- Upper control pressure distribution; control s e t  I, a = 0'. 
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Figure 17.- Concluded. 
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( a )  Study configuration controls undeflected; 
control s e t  I, M = 3 .  

(b )  Upper control deflected 60' lower control undeflected; 
control s e t  11, M = 4. 

A-25649 

( c )  Upper controls deflected 90' lower controls 6.5'; 
control s e t  I, M = 3. 

Figure 18. - Shock-wave pattern on the study configuration. 
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